Chemistry of Natural Compounds, Vol. 45, No. 2, 2009

MODIFIED COUMARINS. 28. SYNTHESIS OF SPIROSUBSTITUTED PYRANOCOUMARINS

I. V. Nagorichna,¹ A. A. Tkachuk,¹ M. M. Garazd,^{1*} Ya. L. Garazd,² and V. P. Khilya²

Spiropyranobenzopyrandiones were prepared, reduced, and dehydrated to form spirosubstituted pyranocoumarins.

Key words: coumarins, pyranocoumarins, spiropyranocoumarins.

Pyranocoumarins (chromeno- α -pyrones) are widely distributed natural coumarins that contain a 2,2-dimethylpyran ring annelated to benzopyran-2-one [1]. Pyranocoumarins also include coumarin derivatives containing an annelated 2,2,-dimethyltetrahydropyran-4-one core. Thus, 8,8-dimethyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione (graveolone) was isolated from parsley [2], *Anethum graveolens* [3-6], and *Pituranthos tortuosus* [7] or clausenine (5-hydroxygraveolone) was isolated from *Clausena heptaphylla* and *C. excavata* [8-10].

We synthesized structural analogs of graveolone and spirosubstituted pyranocoumarins, which are presently practically unstudied [11-13].

¹⁾ Institute of Bioorganic and Petroleum Chemistry, National Academy of Sciences of Ukraine, 02094, Ukraine, Kiev, ul. Murmanskaya, 1, e-mail: gmm@i.com.ua; 2) Taras Shevchenko Kiev National University, 01033, Ukraine, Kiev, ul. Vladimirskaya, 64. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 135-139, March-April, 2009. Original article submitted October 29, 2007.

UDC 547.814.5

7-Hydroxy-8-methylcoumarins 1 and 2 that were required for further transformations were prepared by Pechmann condensation of 2-methylresorcinol with ethylbutyrylacetate or methyl-3-oxoheptanoate in the presence of conc. H_2SO_4 as condensing agent. Hydroxycoumarins 1 and 2 were acetylated by acetic anhydride in pyridine to form 7-acetoxycoumarins 3 and 4. Fries rearrangement of 3 and 4 in the presence of anhydrous AlCl₃ at 120°C produced in high yields 6-acetylcoumarins 5 and 6, convenient starting mateirals for annelation of the 2,2-dimethyltetrahydropyran-4-one core.

Kabbe condensation [14] of **5** and **6** with acetone in the presence of pyrrolidine formed 8,8,10-trimethyl-4-alkyl-7,8dihydropyrano[3,2-*g*]chromen-2,6-diones **7** and **8**, structural analogs of the natural pyranocoumarin graveolone. The PMR spectra of **7** and **8** contained resonances characteristic of the coumarin system and an annelated chromanone ring, a 6H singlet for two methyls at 1.50 ppm and a singlet for CH_2 protons at 2.78 ppm. The ¹³C NMR spectra of **7** and **8** exhibited a resonance for the spiroatom at 81.20-81.30 ppm.

Using cyclic ketones in the Kabbe condensation produced spiropyranobenzopyrandiones **9-18** in high yields. These were spiroanalogs of the natural pyranocoumarin graveolone. We used cyclopentanone (**9** and **10**), cyclohexanone (**11** and **12**), 4-*t*-butylcyclohexanone (**13** and **14**), 3-methylcyclohexanone (**15** and **16**), and 1-acetylpiperidin-4-one (**17** and **18**) in this reaction. The PMR spectra of the spirosubstituted pyranocoumarins showed resonances characteristic of the coumarin ring, the cycloalkyl spirosubstituent, and the formed methylene group at 2.70-3.00 ppm. The ¹³C NMR spectra of spiropyranobenzopyrandiones **11-18** with a cyclohexyl spirosubstituent contained a resonance for the spiroatom at 80-84 ppm. The spiroatom in cyclopentanespiropyranocoumarin **10** resonated at weaker field at 92 ppm. Doubled proton resonances for the spirosubstituent in the cyclohexane substituent. Obviously such splitting was due to the formation of a mixture of two diastereomers.

Reduction of **12** and **13** by NaBH₄ in CH₃OH produced chromanols **19** and **20**, dehydration of which under acidcatalysis conditions (HCl in dioxane) [15] formed spirosubstituted 4-alkylpyrano[3,2-*g*]chromen-2-ones **21** and **22**, spiroanalogs of natural linear pyranocoumarins. The PMR spectra of **21** and **22** contained two doublets at 5.73-5.76 and 6.48-6.54 ppm with SSCC J = 9.6 Hz that were characteristic of an annelated pyran ring [16]. The ¹³C NMR spectra of **21** and **22** showed a resonance for the C spiroatom at 78.03-78.43 ppm.

EXPERIMENTAL

The course of reactions and purity of products were monitored by TLC on Merck 60 F_{254} plates with elution by CHCl₃:CH₃OH (9:1 and 19:1). Melting points were determined on a Kofler block. NMR spectra were recorded on Varian VXR-300 Mercury 400 spectrometers at 300 and 400 MHz, respectively, vs. TMS (internal standard). Elemental analyses of all compounds agreed with those calculated.

7-Hydroxy-8-methyl-4-propylchrome-2-one (1). A cooled (0°C) solution of 2-methylresorcinol (12.41 g, 0.1 mol) and ethylbutyrylacetate (15.9 mL, 0.1 mol) in ethanol (20 mL) was stirred vigorously, cooled, and treated dropwise with conc. H_2SO_4 (40 mL). The mixture was stirred until thickened, left overnight at room temperature, and poured into icewater (500 mL). The resulting precipitate was filtered off and crystallized from aqueous propanol-2 to afford 1, mp 172-173°C (lit. [17] 165-166°C), $C_{13}H_{14}O_3$.

PMR spectrum (300 MHz, DMSO-d₆, δ , ppm, J/Hz): 1.00 (3H, t, J = 7.2, CH₃-3'), 1.67 (2H, m, CH₂-2'), 2.18 (3H, s, CH₃-8), 2.69 (2H, t, J = 7.2, CH₂-1'), 5.98 (1H, s, H-3), 6.83 (1H, d, J = 8.7, H-6), 7.38 (1H, d, J = 8.7, H-5), 10.24 (1H, s, OH-7).

7-Hydroxy-8-methyl-4-butylchromen-2-one (2) was prepared analogously to **1** from 2-methylresorcinol (12.41 g, 0.1 mol) and methyl-3-oxoheptanoate (15.9 mL, 0.1 mol). Yield 79%, mp 158-159°C, $C_{13}H_{14}O_3$.

PMR spectrum (300 MHz, DMSO-d₆, δ , ppm, J/Hz): 0.92 (3H, t, J = 7.2, CH₃-4'), 1.37 (2H, m, CH₂-3'), 1.58 (2H, m, CH₂-2'), 2.16 (3H, s, CH₃-8), 2.72 (2H, t, J = 7.2, CH₂-1'), 6.07 (1H, s, H-3), 6.89 (1H, d, J = 8.1, H-6), 7.47 (1H, d, J = 8.1, H-5), 10.39 (1H, s, OH).

7-Acetoxy-8-methyl-4-propylchromen-2-one (3). A mixture of **1** (10.95 g, 50 mmol), freshly distilled acetic anhydride (9.5 mL, 100 mmol), and anhydrous pyridine (5 mL) was heated for 1 h and left overnight at room temperature. The resulting precipitate was filtered off and crystallized from propanol-2. Yield 76%, mp 114-116°C (lit. [17] 106-107°C), $C_{15}H_{16}O_4$.

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.98 (3H, t, J = 7.6, CH₃-3', 1.64 (2H, m, CH₂-2'), 2.16 (3H, s, CH₃-8), 2.37 (3H, s, CH₃COO-7), 2.76 (2H, t, J = 7.6, CH₂-1'), 6.32 (1H, s, H-3), 7.14 (1H, d, J = 8.8, H-6), 7.70 (1H, d, J = 8.8, H-5).

7-Acetoxy-8-methyl-4-butylchromen-2-one (4) was prepared analogously to 3 from 2 (11.64 g, 50 mmol), acetic anhydride (9.5 mL, 100 mmol), and anhydrous pyridine (5 mL). Yield 66%, mp 89-90°C, $C_{16}H_{18}O_4$.

PMR spectrum (300 MHz, $CDCl_3$, δ , ppm, J/Hz): 0.98 (3H, t, J = 7.2, CH_3 -4'), 1.47 (2H, m, CH_2 -3'), 1.68 (2H, m, CH_2 -2'), 2.29 (3H, s, CH_3 -8), 2.38 (3H, s, CH_3 COO-7), 2.75 (2H, t, J = 7.2, CH_2 -1'), 6.25 (1H, s, H-3), 7.02 (1H, d, J = 8.8, H-6), 7.49 (1H, d, J = 8.8, H-5).

6-Acetyl-7-hydroxy-8-methyl-4-propylchromen-2-one (5). A ground mixture of coumarin **3** (7.80 g, 30 mmol) and $AlCl_3$ (12.00 g, 90 mmol) was held at 120-130°C for 1 h, cooled, and diluted with HCl solution (100 mL, 1 N). The resulting precipitate was filtered off and crystallized from propanol-2. Yield 85%, mp 145-147°C, $C_{15}H_{16}O_4$.

PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 1.00 (3H, t, J = 7.6, CH₃-3'), 1.66 (2H, m, CH₂-2'), 2.15 (3H, s, CH₃-8), 2.75 (3H, s, CH₃CO-6), 2.82 (2H, t, J = 7.6, CH₂-1'), 6.20 (1H, s, H-3), 8.11 (1H, s, H-5), 12.99 (1H, s, OH).

6-Acetyl-7-hydroxy-8-methyl-4-butylchromen-2-one (6) was prepared analogously to **5** from **4** (8.23 g, 30 mmol) and $AlCl_3$ (12.00 g, 90 mmol). Yield 76%, mp 123-125°C, $C_{15}H_{16}O_4$.

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.96 (3H, t, J = 7.6, CH₃-4'), 1.40 (2H, m, CH₂-3'), 1.61 (2H, m, CH₂-2'), 2.13 (3H, s, CH₃-8), 2.74 (3H, s, CH₃CO-6), 2.82 (2H, t, J = 7.6, CH₂-1'), 6.18 (1H, s, H-3), 8.08 (1H, s, H-5), 12.95 (1H, s, OH).

4-Alkyl-7,8-dihydropyrano[3,2-*g*]chromen-2,6-diones 7-18. A solution of 6-acetyl-7-hydroxycoumarin 5 or 6 (10 mmol) in CH_3CN (10 mL) was treated with pyrrolidine (25 mmol, 2.1 mL) and the appropriate ketone (25 mmol) and held at 45C for 8-20 h (end of the reaction determined by TLC). The solvent was removed in vacuo in a rotary evaporator. The solid was crystallized from propanol-2.

8,8,10-Trimethyl-4-propyl-7,8-dihydropyrano[**3,2**-*g*]**chromen-2,6-dione** (**7**). Yield 72%, mp 119-121°C, C₁₈H₂₀O₄. PMR spectrum (300 MHz, CDCl₃, δ, ppm, J/Hz): 1.06 (3H, t, J = 7.2, CH₃-3'), 1.49 (6H, s, 2 × CH₃-8), 1.73 (2H, m, CH₂-2'), 2.31 (3H, s, CH₃-10), 2.72 (2H, t, J = 7.6, CH₂-1'), 2.78 (2H, s, CH₂-7), 6.17 (1H, s, H-3), 8.07 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.87 (C-6), 159.98 (C-2, C-10a), 157.26 (C-4), 156.72 (C-9a), 121.02 (C-4a), 116.97 (C-5), 114.26 (C-5a), 113.37 (C-3), 111.89 (C-10), 81.27 (C-8), 48.26 (C-7), 33.38 (C-1'), 26.89 (CH₃-8), 21.70 (C-2'), 14.30 (C-3'), 8.71 (CH₃-10).

8,8,10-Trimethyl-4-butyl-7,8-dihydropyrano[**3,2-***g*]**chromen-2,6-dione** (**8**). Yield 65%, mp 176-177°C, $C_{19}H_{22}O_4$. PMR spectrum (300 MHz, CDCl₃, δ , ppm, J/Hz): 0.98 (3H, t, J = 7.2, CH₃-4'), 1.43 (2H, m, CH₂-3'), 1.51 (6H, s, 2 × CH₃-8), 1.67 (2H, m, CH₂-2'), 2.30 (3H, s, CH₃-10), 2.76 (2H, t, J = 7.6, CH₂-1'), 2.78 (2H, s, CH₂-7), 6.17 (1H, s, H-3), 8.07 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.83 (C-6), 159.95 (C-2, C-10a), 157.48 (C-4), 156.71 (C-9a), 120.99 (C-4a), 116.96 (C-5), 114.26 (C-5a), 113.32 (C-3), 111.81 (C-10), 81.25 (C-8), 48.26 (C-7), 31.19 (C-1'), 30.54 (CH₃-8), 26.89 (C-2'), 22.59 (C-3'), 14.34 (C-4'), 8.71 (CH₃-10).

Spiro[(4-propyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-cyclopentane] (9). Yield 78%, mp 246-247°C, $C_{19}H_{20}O_4$.

PMR spectrum (300 MHz, $CDCl_3$, δ , ppm, J/Hz): 1.05 (3H, t, J = 7,2, CH_3 -3'), 1.60-2.15 (10H, CH_2 -2', CH_2 -2', CH_2 -3', CH_2 -4', CH_2 -5'), 2.29 (3H, s, CH_3 -10), 2.75 (2H, t, J = 7.5, CH_2 -1'), 2.88 (2H, s, CH_2 -7), 6.17 (1H, s, H-3), 8.07 (1H, s, H-5).

 $\label{eq:spirol} Spiro[(4-butyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-cyclopentane] (10). \ \mbox{Yield}\ 68\%,\ \mbox{mp}\ 168-169^{\circ}\mbox{C}, \ \mbox{C}_{20}\mbox{H}_{22}\mbox{O}_4.$

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.93 (3H, t, J = 7.2, CH₃-4'), 1.41 (2H, m, CH₂-3'), 1.50-2.00 (10H, CH₂-2', CH₂-2', CH₂-3', CH₂-4', CH₂-5'), 2.18 (3H, s, CH₃-10), 2.79 (2H, t, J = 7.6, CH₂-1'), 2.98 (2H, s, CH₂-7), 6.26 (1H, s, H-3), 7.98 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.63 (C-6), 160.54 (C-2), 160.00 (C-10a), 157.63 (C-4), 156.71 (C-9a), 121.25 (C-4a), 117.94 (C-5), 114.76 (C-5a), 111.93 (C-3), 110.06 (C-10), 91.79 (C-8), 46.57 (C-7), 37.60 (C-2", C-5"), 31.09 (C-1'), 30.55 (C-3", C-4"), 23.86 (C-2'), 22.28 (C-3'), 13.91 (C-4'), 8.21 (CH₃-10).

 $\label{eq:spirol} Spiro[(4-propyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-cyclohexane] (11). \ \mbox{Yield 73\%, mp 197-199°C, } C_{20}\ \mbox{H}_{22}\ \mbox{O}_4.$

PMR spectrum (300 MHz, CDCl₃, δ , ppm, J/Hz): 1.06 (3H, t, J = 7.2, CH₃-3'), 1.23-2.15 (12H, CH₂-2', CH₂-2", CH₂-3", CH₂-4", CH₂-5", CH₂-6"), 2.34 (3H, s, CH₃-10), 2.74 (2H, t, J = 7.6, CH₂-1'), 2.76 (2H, s, CH₂-7), 6.17 (1H, s, H-3), 8.05 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.61 (C-6), 159.98 (C-2), 159.73 (C-10a), 157.32 (C-4), 157.10 (C-9a), 121.03 (C-4a), 117.79 (C-5), 114.56 (C-5a), 113.68 (C-3), 111.98 (C-10), 81.91 (C-8), 48.10 (C-7), 34.76 (C-2", C-6"), 33.35 (C-1'), 25.07 (C-4"), 21.69 (C-3", C-5"), 21.59 (C-2'), 13.93 (C-3'), 8.25 (CH₂-10).

Spiro[(4-butyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-cyclohexane] (12). Yield 82%, mp 200-201°C, $C_{21}H_{24}O_4$.

PMR spectrum (300 MHz, CDCl₃, δ, ppm, J/Hz): 0.98 (3H, t, J = 7.2, CH₃-4'), 1.25-2.11 (14H, CH₂-2', CH₂-3', CH₂-2", CH₂-3", CH₂-4", CH₂-5", CH₂-6"), 2.36 (3H, s, CH₃-10), 2.74 (2H, s, CH₂-7), 2.76 (2H, t, J = 7.6, CH₂-1'), 6.17 (1H, s, H-3), 8.06 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.59 (C-6), 159.98 (C-2), 159.73 (C-10a), 157.61 (C-4), 157.10 (C-9a), 121.02 (C-4a), 117.80 (C-5), 114.57 (C-5a), 113.66 (C-3), 111.91 (C-10), 81.91 (C-8), 48.10 (C-7), 34.77 (C-2", C-6"), 31.10 (C-1'), 30.56 (C-2'), 25.07 (C-4"), 22.29 (C-3'), 21.69 (C-3", C-5"), 13.91 (C-4'), 8.25 (CH₃-10).

 $\label{eq:spirol} Spiro[(4-propyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-(4-t-butylcyclohexane)] \ (13). \ \ Yield \ 81\%, mp \ 231-232^\circ C, \ C_{24}H_{30}O_4.$

PMR spectrum (300 MHz, CDCl₃, δ , ppm, J/Hz): 0.90 [9H, s, (CH₃)₃-4"], 1.06 (3H, t, J = 7.2, CH₃-3'), 1.37-2.20 (11H, CH₂-2', CH₂-2", CH₂-3", H-4", CH₂-5", CH₂-6"), 2.36 (3H, s, CH₃-10), 2.72 (2H, s, CH₂-7), 2.74 (2H, t, J = 7.6, CH₂-1'), 6.17 (1H, s, H-3), 8.06 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.67 (C-6), 159.95 (C-2), 159.64 (C-10a), 157.30 (C-4), 157.10 (C-9a), 121.10 (C-4a), 117.89 (C-5), 114.51 (C-5a), 113.73 (C-3), 111.99 (C-10), 81.26 (C-8), 48.56 (C-7), 46.69 (C-4"), 34.81 (C-2", C-6"), 33.35 (C-1'), 32.59 [<u>C</u>-(CH₃)₃], 27.77 [(CH₃)₃], 22.20 (C-3", C-5"), 21.58 (C-2'), 13.92 (C-3'), 8.11 (CH₃-10).

Spiro[(4-butyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-(4-t-butylcyclohexane)] (14). Yield 73%, mp 250-251°C, $C_{25}H_{32}O_4$.

PMR spectrum (300 MHz, CDCl₃, δ , ppm, J/Hz): 0.90 [9H, s, (CH₃)₃-4"], 0.98 (3H, t, J = 7.2, CH₃-4'), 1.36-2.20 (13H, CH₂-2', CH₂-3', CH₂-2", CH₂-3", H-4", CH₂-5", CH₂-6"), 2.36 (3H, s, CH₃-10), 2.71 (2H, s, CH₂-7), 2.77 (2H, t, J = 7.6, CH₂-1'), 6.17 (1H, s, H-3), 8.06 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.61 (C-6), 159.98 (C-2), 159.68 (C-10a), 157.60 (C-4), 157.10 (C-9a), 121.11 (C-4a), 117.85 (C-5), 114.56 (C-5a), 113.73 (C-3), 111.93 (C-10), 81.29 (C-8), 48.59 (C-7), 46.70 (C-4"), 34.82 (C-2", C-6"), 32.59 [C-(CH₃)₃], 31.10 (C-1'), 30.56 (C-2'), 27.79 [(CH₃)₃], 22.29 (C-3'), 22.21 (C-3", C-5"), 13.92 (C-4'), 8.21 (CH₃-10).

Spiro[(4-propyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-(3-methylcyclohexane)] (15). Yield 59%, mp 173-174°C, $C_{22}H_{26}O_4$.

PMR spectrum (300 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.86 (3H, d, J = 7.2, CH₃-3"), 0.99 (3H, t, J = 7.2, CH₃-3'), 1.05-2.00 (11H, CH₂-2', CH₂-2", CH₂-3", H-3", CH₂-5", CH₂-6"), 2.20 and 2.24 (3H, 2s, CH₃-10), 2.77 (2H, t, J = 7.6, CH₂-1'), 2.82 and 3.00 (2H, s, CH₂-7), 6.25 (1H, s, H-3), 7.94 and 7.96 (1H, 2s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.86 (C-6), 159.99 (C-2), 159.36 (C-10a), 157.29 (C-4), 156.77 (C-9a), 121.01 (C-4a), 117.53 (C-5), 114.45 (C-5a), 113.47 (C-3), 111.98 (C-10), 83.60 and 82.19 (C-8), 48.61 and 42.86 (C-7), 33.97 and 33.74 (C-2", C-6"), 33.41 (C-1'), 27.84 (C-4"), 22.75 (C-3"), 21.73 (CH₃-3"), 21.53 (C-2', C-5"), 14.31 (C-3'), 8.63 (CH₃-10).

Spiro[(4-butyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,1'-(3-methylcyclohexane)] (16). Yield 81%, mp 155-157°C, $C_{23}H_{28}O_4$.

PMR spectrum (300 MHz, CDCl₃, δ, ppm, J/Hz): 0.91 (3H, d, J = 7.2, CH₃-3"), 0.98 (3H, t, J = 7.2, CH₃-4'), 1.20-2.15 (13H, CH₂-2', CH₂-3', CH₂-3", H-3", CH₂-5", CH₂-6"), 2.30 and 2.35 (3H, 2s, CH₃-10), 2.71 and 2.90 (2H, s, CH₂-7), 2.77 (2H, t, J = 7.6, CH₂-1'), 6.17 (1H, s, H-3), 8.04 and 8.06 (1H, 2s, H-5).

¹³C NMR spectrum (100MHz, DMSO-d₆, δ, ppm): 191.78 and 191.48 (C-6), 159.94 and 159.93 (C-2), 159.77 and 159.33 (C-10a), 157.48 and 156.79 (C-4), 156.73 (C-9a), 120.95 and 120.94 (C-4a), 117.49 and 117.29 (C-5), 114.44 (C-5a), 113.41 (C-3), 111.81 and 111.79 (C-10), 83.60 and 82.17 (C-8), 48.61 and 42.87 (C-7), 33.97 and 33.73 (C-2", C-6"), 31.21 (C-1'), 30.56 (C-2'), 27.82 (C-4"), 22.56 (C-3', C-3"), 21.53 (CH₃-3", C-5"), 14.34 (C-4'), 8.59 (CH₃-10).

 $\label{eq:spirol} Spiro[(4-propyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,4'-(1-acetylpiperidine)] \quad (17). \qquad \mbox{Yield 56\%, mp 216-217°C, $C_{21}H_{23}NO_{5}$}.$

PMR spectrum (300 MHz, CDCl₃, δ, ppm, J/Hz): 1.06 (3H, t, J = 7.2, CH₃-3'), 1.58-1.80 (4H, m, CH₂-2', H-3α'', H-5α''), 2.05-2.18 (2H, m, H-3β'', H-5β''), 2.13 (3H, s, CH₃CON-4''), 2.37 (3H, s, CH₃-10), 2.74 (2H, t, J = 7.6, CH₂-1'), 2.79 (2H, s, CH₂-7), 3.03 and 3.51 (2H, 2m, H-2α'', H-6α''), 3.69 and 4.47 (2H, 2m, H-3β'', H-5β''), 6.20 (1H, s, H-3), 8.08 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.30 (C-6), 168.85 (<u>C</u>O–CH₃), 159.93 (C-2), 159.01 (C-10a), 157.27 (C-4), 156.82 (C-9a), 121.11 (C-4a), 117.49 (C-5), 114.70 (C-5a), 113.75 (C-3), 112.16 (C-10), 80.15 (C-8), 47.34 (C-7), 42.09 (C-3", C-5"), 34.61 (C-2", C-6"), 33.40 (C-1'), 21.96 (C-2'), 21.75 (CO–<u>C</u>H₃), 14.30 (C-3'), 8.69 (CH₃-10).

Spiro[(4-butyl-7,8-dihydropyrano[3,2-g]chromen-2,6-dione)-8,4'-(1-acetylpiperidine)] (18). Yield 71%, mp 197-198°C, $C_{22}H_{25}NO_5$.

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.98 (3H, t, J = 7.2, CH₃-4'), 1.40-2.00 (8H, m, CH₂-2', CH₂-3', CH₂-3", CH₂-5"), 2.03 (3H, s, CH₃CON-4"), 2.28 (3H, s, CH₃-10), 2.80 (2H, t, J = 7.6, CH₂-1'), 2.92 (2H, s, CH₂-7), 2.92 and 3.65 (2H, 2m, H-2 α ", H-6 α "), 3.72 and 4.21 (2H, 2m, H-3 β ", H-5 β "), 6.28 (1H, s, H-3), 7.99 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 191.56 (C-6), 168.81 (<u>C</u>O–CH₃), 159.98 (C-2), 159.72 (C-10a), 157.47 (C-4), 156.95 (C-9a), 121.10 (C-4a), 117.79 (C-5), 114.61 (C-5a), 113.71 (C-3), 111.96 (C-10), 80.95 (C-8), 47.34 (C-7), 42.11 (C-3", C-5"), 34.65 (C-2", C-6"), 31.10 (C-1'), 30.56 (C-2'), 22.29 (C-3'), 21.75 (CO–<u>C</u>H₃), 13.91 (C-4'), 8.25 (CH₃-10).

Spiro[(6-hydroxy-4-alkyl-7,8-dihydropyrano[3,2-g]chromen-2-one)-8,1'-cyclohexanes] 19 and 20. A solution of 12 or 13 (3 mmol) in CH_3OH (10 mL) was treated in portions with $NaBH_4$ (0.46 g, 12 mmol), held at room temperature and stirred for 2 h (end of reaction determined by TLC), poured into saturated NaCl solution (100 mL), and extracted with EtOAc (3 × 20 mL). The organic layer was dried over anhydrous MgSO₄. Solvent was removed in vacuo in a rotary evaporator. The solid was crystallized from CH_3OH .

Spiro[(6-hydroxy-4-propyl-7,8-dihydropyrano[3,2-g]chromen-2-one)-8,1'-(4-t-butylcyclohexane)] (19). Yield 71%, mp 194-195°C, $C_{24}H_{32}O_4$.

PMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 0.86 [9H, s, (CH₃)₃-4"], 0.98 (3H, t, J = 7.6, CH₃-3'), 1.00-2.05 (13H, CH₂-7, CH₂-2', CH₂-2", CH₂-3", H-4", CH₂-5", CH₂-6"), 2.18 (3H, s, CH₃-10), 2.72 (2H, t, J = 7.6, CH₂-1'), 4.78 (1H, m, H-6), 5.63 (1H, d, J = 5.6, OH-6), 6.11 (1H, s, H-3), 7.74 (1H, s, H-5).

Spiro[(6-hydroxy-4-butyl-7,8-dihydropyrano[3,2-g]chromen-2-one)-8,1'-cyclohexane] (20). Yield 92%, mp 140-141°C, $C_{21}H_{26}O_4$.

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.93 (3H, t, J = 7.2, CH₃-4'), 1.25-2.15 (16H, CH₂-7, CH₂-2', CH₂-3', CH₂-3'', CH₂-3'', CH₂-5'', CH₂-6''), 2.19 (3H, s, CH₃-10), 2.74 (2H, t, J = 7.6, CH₂-1'), 4.76 (1H, m, H-6), 5.57 (1H, d, J = 5.6, OH-6), 6.11 (1H, s, H-3), 7.71 (1H, s, H-5).

Spiro[(4-alkylpyrano[3,2-g]chromen-2-one)-8,1'-cyclohexanes] 21 and 22. A solution of 19 or 20 (2 mmol) in dioxane (5 mL) was treated with HCl solution (5 mL, 4 M), held at room temperature and stirred for 4 h (end of reaction determined using TLC). Solvent was removed in vacuo in a rotary evaporator. The solid was crystallized from CH₃OH.

Spiro[(4-propylpyrano[3,2-g]chromen-2-one)-8,1'-(4-t-butylcyclohexane)] (21). Yield 84%, mp 168-169°C, $C_{24}H_{30}O_3$.

PMR spectrum (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.90 [9H, s, (CH₃)₃-4"], 0.99 (3H, t, J = 7.6, CH₃-3'), 1.10-2.00 (11H, CH₂-2', CH₂-2", CH₂-3", H-4", CH₂-5", CH₂-6"), 2.21 (3H, s, CH₃-10), 2.71 (2H, t, J = 7.6, CH₂-1'), 5.73 (1H, d, J = 9.6, H-7), 6.12 (1H, s, H-3), 6.54 (1H, d, J = 9.6, H-6), 7.40 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 160.80 (C-2), 157.54 (C-10a), 153.80 (C-4), 152.99 (C-9a), 131.81 (C-7), 122.72 (C-6), 120.23 (C-4a), 11.78 (C-5), 113.16 (C-5a), 112.93 (C-3), 110.70 (C-10), 78.03 (C-8), 46.74 (C-4"), 36.27 (C-2", C-6"), 33.48 (C-1'), 32.66 [<u>C</u>–(CH₃)₃], 27.80 [(CH₃)₃], 22.02 (C-3", C-5"), 21.77 (C-2'), 13.97 (C-3'), 7.93 (CH₃-10).

Spiro[(4-butylpyrano[3,2-g]chromen-2-one)-8,1'-cyclohexane] (22). Yield 86%, mp 114-115°C, C₂₁H₂₄O₃.

PMR spectrum (300 MHz, DMSO-d₆, δ, ppm, J/Hz): 0.95 (3H, t, J = 7.2, CH₃-4'), 1.20-1.90 (14H, CH₂-2', CH₂-3', CH₂-2", CH₂-3", CH₂-4", CH₂-5", CH₂-6"), 2.23 (3H, s, CH₃-10), 2.71 (2H, t, J = 7.5, CH₂-1'), 5.76 (1H, d, J = 9.6, H-7), 6.04 (1H, s, H-3), 6.48 (1H, d, J = 9.6, H-6), 7.29 (1H, s, H-5).

¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 160.78 (C-2), 157.80 (C-10a), 153.88 (C-4), 153.20 (C-9a), 131.43 (C-7), 122.48 (C-6), 120.24 (C-4a), 118.67 (C-5), 112.91 (C-5a), 112.86 (C-3), 110.51 (C-10), 78.43 (C-8), 36.60 (C-2", C-6"), 31.41 (C-1'), 30.80 (C-2'), 25.25 (C-4"), 22.62 (C-3'), 21.61 (C-3", C-5"), 14.38 (C-4'), 8.46 (CH₃-10).

ACKNOWLEDGMENT

We thank OAO Eximed (Kiev, Ukraine) for help in performing the work.

REFERENCES

- 1. R. D. H. Murray, *The Naturally Occurring Coumarins*, Springer, Vienna-New York (2002).
- 2. R. C. Beier, G. W. Ivie, and E. H. Oertli, *Phytochemistry*, **36**, 869 (1994).
- 3. R. T. Aplin and C. B. Page, J. Chem. Soc. C, 2593 (1967).
- 4. A. S. Mujumdar and R. S. Usgaonkar, J. Chem. Soc. Perkin Trans. 1, 2236 (1974).
- 5. T. R. Seshadri and Vishwapaul, J. Sci. Ind. Res., 32, 227 (1973).
- 6. B. Talapatra, S. K. Mukhopadhyay, M. K. Chaudhuri, and S. K. Talapatra, *Indian J. Chem., Sect. B*, **14**, 129 (1976).
- 7. M. S. Abdel-Kader, J. Braz. Chem. Soc., 14, 48 (2003).
- 8. A. K. Ganguly, B. S. Joshi, V. N. Kamat, and A. H. Manmade, *Tetrahedron*, 4777 (1967).
- 9. B. S. Joshi and V. N. Kamat, Tetrahedron Lett., 5767 (1966).
- 10. B. S. Joshi, V. N. Makat, and A. K. Saksena, Tetrahedron, 4785 (1967).
- 11. El-S. I. El-Desoky, E. M. El-Telbani, M. A. Hammad, F. A. Badria, and A.-R. H. Abdel-Rahman, *Z. Naturforsch. B*, **53**, 909 (1998).
- 12. V. Panteleon, P. Marakos, N. Pouli, E. Mikros, and I. Andreadou, J. Pharm. Pharmacol., 55, 1029 (2003).
- 13. V. S. Moskvina, Ya. L. Garazd, M. M. Garazd, A. V. Turov, and V. P. Khilya, *Khim. Geterotsikl. Soedin.*, 518 (2007).
- 14. H. J. Kabbe, Synthesis, 886 (1978).
- 15. A. Levai, T. Timar, P. Sebok, and T. Eszenyi, *Heterocycles*, 53, 1193 (2000).
- 16. M. E. Perl'son, Yu. N. Sheinker, and A. A. Savina, *Spectra and Structure of Coumarins, Chromones, and Xanthones* [in Russian], Meditsina, Moscow (1975).
- 17. V. K. Ahluwalia and R. P. Tripathi, J. Indian Chem. Soc., 61, 1023 (1984).